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Initial applications of the GriPhyN Chimera Virtual Data System have been performed within the context of CMS Production 
of Monte Carlo Simulated Data. The GriPhyN Chimera system consists of four primary components: 1) a Virtual Data 
Language, which is used to describe virtual data products, 2) a Virtual Data Catalog, which is used to store virtual data entries, 
3) an Abstract Planner, which resolves all dependencies of a particular virtual data product and forms a location and existence 
independent plan, 4) a Concrete Planner, which maps an abstract, logical plan onto concrete, physical grid resources accounting 
for staging in/out files and publishing results to a replica location service. A CMS Workflow Planner, MCRunJob, is used to 
generate virtual data products using the Virtual Data Language. Subsequently, a prototype workflow manager, known as 
WorkRunner, is used to schedule the instantiation of virtual data products across a grid.  

 

1. INTRODUCTION 
The term “virtual data” as used in grid computing 

represents an abstraction of actual computational 
workflows, which are site specific and data existence 
dependent, to that of workflow descriptions, which are 
independent of both location and existence.    Because the 
execution environment in grid computing is intrinsically 
both heterogeneous and dynamic, the use of virtual data 
provides flexibility to grid execution planners, allowing 
them to take advantage of scheduling techniques normally 
reserved for well understood, homogenous environments.  
From a physicist’s point of view, however, virtual data 
represents a “recipe” for re-producing historical data or 
producing future data and, as a consequence, provides a 
provenance record of any data product created within a 
virtual data system.   

This paper reports on the initial application of the 
GriPhyN Virtual Data System, known as Chimera [1], to 
the CMS Monte Carlo production of simulated data in a 
grid environment. 

2. THE CHIMERA VIRTUAL DATA SYSTEM 
The Chimera Virtual Data System requires that jobs be 

expressed in a Virtual Data Language (VDL).  Chimera 
currently operates on two types of VDL objects: 
transformations and derivations [2].  A transformation is a 
schema defining formal types of input and output required 
to execute a particular application and is mapped onto an 
executable.  A derivation represents a particular invocation 
of a transformation and is an actual virtual data product; it 
contains a detailed record of all the parameters needed to 
create a piece of actual data.  Virtual data becomes 
physical data when its derivation is executed. A 
transformation thus represents a class of virtual data 
objects, while a derivation represents a particular virtual 
data object.  [1, 3]  

Chimera stores these VDL objects in a Virtual Data 
Catalogue (VDC).  When a user requests that a particular 
virtual data product be instantiated, Chimera invokes an 
“abstract planner” which queries the VDC. This query 
recursively traverses the associated graph of derivations, 
thereby satisfying any required (virtual) data 
dependencies, and returns an abstract workflow plan in the 
form of a Directed Acyclic Graph (DAG), where each 
node represents an application and each edge an 
input/output dependency.  This abstract DAG, the first step 
in the execution process, specifies all of the I/O 
dependencies required to create the requested virtual data 
product and represents the graph with maximal (virtual) 
data dependencies.   
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Figure 1: A concrete Chimera DAG corresponding to a 
CMS virtual data request:  Mapping an abstract DAG 
onto physical grid resources produces a concrete DAG, 
which can be directly submitted to the grid via 
Condor-G/DAGMan. 

Once an abstract workflow plan for the requested virtual 
data product has been produced, the plan is then mapped 
onto a set of actual grid resources for execution [4].  Given 
a user declared site for execution, Chimera invokes the 
Pegasus “concrete planner” [5] which first checks a 
Replication Location Service (RLS) [6] for the actual 
existence of any dependent input/output data in the 
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abstract DAG, pruning any superfluous edges, and 
secondly dresses up any remaining nodes with stage-in, 
stage-out, and register nodes accounting for any location 
specific requirements of the chosen grid execution site (see 
Figure 1). The resulting concrete DAG then contains the 
minimal execution steps required to produce the requested 
virtual data product and is fully resolved onto particular 
grid resources.  The Chimera Virtual Data System 
produces the concrete DAG in the Condor/DAGMan 
ClassAd format, enabling the user to directly submit the 
plan for the requested virtual data product to Condor-
G/DAGMan [7, 8]. 

3. A CMS PRODUCTION USE-CASE OF 
SIMULATED DATA 

A variety of different use-cases exist for production of 
simulated CMS data however, for this study, only one of 
the simpler cases was implemented: an “n-tuple-only” 
production, consisting of a five stage computational 
pipeline as shown in Figure 2. 
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Figure 2: N-tuple-only CMS simulation pipeline.  The 
two stages on the left simulate the CMS detector and 
three stages on the right process events from the 
(simulated) detector. 

For simplicity, this particular pipeline can be split into 
two sections: simulation and reconstruction.  The initial 
section consists of two FORTRAN application stages.  
The first, a generation stage called CMKIN, simulates the 
underlying physics of each event using Pythia [9].  The 
second stage, called CMSIM, corresponds to detector 
simulation and models the CMS experimental apparatus’ 
response via GEANT 3 [10] to the events created in the 
first stage.   

The second section, reconstruction and analysis1, 
consists of three different application invocations of the 
CMS analysis and reconstruction C++ framework, known 
as ORCA [11].  Each ORCA application is a dynamically 
linked executable and requires local access to a CMS 
specific data persistency system.2  The first ORCA 
application stage, hit formatting, copies the simulated 
detector raw hit data from a flat FORTRAN file into an 
object-oriented database.  The next ORCA application 
stage reconstructs the physics event data from the raw 
                                                           
1 Initial applications of the Chimera Virtual Data System with 
specific emphasis on the analysis of simulated CMS physics data 
have been performed and are reported in [14]. 
2 At the time of this study, Objectivity/DB was used as the CMS 
data persistency system. 

detector response.  The final ORCA application stage 
corresponds to analysis and selects (or possibly creates) 
user-specific information from the reconstructed event 
data, producing a smaller, concise, flat n-tuple file that is 
more easily analyzed by CMS physicists.  This last file, in 
an n-tuple-only production, is the only important piece of 
data.  All other intermediate files and databases may be 
discarded and only log files for the intermediate data 
products need to be kept for quality assurance validation. 

4. APPLYING CHIMERA TO CMS 
PRODUCTION 

For the chosen CMS production use-case, only one set 
of transformations, defining the input/output dependency 
schema for each application, had to be created. It would 
have been optimal to create one transformation for each 
stage in the CMS pipeline, but limitations of the CMS 
executables and the grid environment required that they be 
lumped into two transformations, one for each section of 
the pipeline (represented by the execution job nodes in 
Figure 1).  The below text represents example VDL code 
for the CMKIN/CMSIM transformation and a 
corresponding derivation: 

 
TR FORTRAN_SECTION( none runnum, none project,  
            none numevents, output outfile,  
            input kincard, input simcard,  
            input geomfile, output logfile ) 
{ 
   argument = ${none:runnum}; 
   argument = ${none:project}; 
   argument = ${none:numevents}; 
   argument = ${input:kincard}; 
   argument = ${input:simcard}; 
   argument = ${input:geomfile}; 
   argument = ${output:logfile}; 
   argument = ${output:outfile}; 
} 
 
DV EG02_BIGJETS_1_SIMULATION->FORTRAN_SECTION( 
  kincard=@{input:"eg02_BigJets_Id_252.txt"},  
  simcard=@{input:"STANDARD_125_Id_42.txt"},  
  geomfile=@{input:"cms125.rz"}, 
  logfile=@{output:"fortran.eg02_BigJets_1.log"}, 
  numevents="250",  
  outfile=@{output:"eg02_BigJets_1.fz"},  
  project="eg02_BigJets",  
  runnum="1" ); 
 

The transformation argument types input, output, none 
explicitly indicate dependencies.  Chimera resolves input 
dependencies by RLS lookup or transformation 
invocation, and output dependencies by RLS register; 
arguments that pose no dependency requirements are 
simple parameters.  In this particular example, project 
represents the name of the production; runnum corresponds 
to job-splitting (see below) and doubles as the random 
number seed used for the job, numevents represents the 
number of events which are to be produced by the job, 
kincard is the CMKIN input card file, simcard is the 
CMSIM input card file, geomfile specifies the input 
GEANT geometry file for the CMS detector, logfile 
names the output file for "stdout" from both the CMKIN 
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and CMSIM applications, and outfile identifies the 
output CMSIM data file.3 

As Chimera requires that only one executable be 
mapped to a transformation, CMS application wrapper 
scripts were written to encapsulate the interaction of all the 
executables within a section.  These scripts, in addition to 
encapsulating the various stages, must also gather 
information needed to update a centralised CMS reference 
metadata database (known as the RefDB [12]) and must 
configure the execution environment for the CMS 
executables.  Configuring the local CMS execution 
environment was a significant overhead, requiring manual 
pre-installation and configuration of the CMS software at 
each individual grid site.  

A typical CMS production run requires that hundreds, 
sometimes thousands, of derivations be created. In 
addition, CMS requires that all sites producing CMS 
simulations read their input parameters from the CMS 
metadata database (RefDB) and write back to the database 
a list of values describing how and when the data was 
produced [12].  In order to meet these requirements, 
several proof-of-concept Bourne Shell scripts were 
written.   

First, prototype scripts were written to interface 
Chimera with the RefDB.  There are two interface scripts: 
one reads from the database and one writes to the 
database.  The “read” script queries the RefDB and 
produces a job description file.  This file is used later to 
write the derivations.  The “write” script parses the log 
files produced by the CMS wrapper scripts described 
above for information about the success of the job, the size 
and location of the output files, and many of the physical 
parameters created by the simulation; this parsed data is 
reformatted and updated into the RefDB. 

The job description file produced by the “read” script is 
passed to a prototype derivation generating script.  This 
script reads the job description file to determine various 
job parameters.  A typical production may require 100,000 
or more events to be produced, requiring several thousand 
CPU/hours to compute.  Due to the parallel properties of 
the Monte Carlo simulation, this large production is split 
into a number of smaller jobs for computation.  The 
“derivation generating” script performs this splitting and 
adjusts all of the input parameters accordingly, before 
writing out all of the derivations and creating the abstract 
DAG for each individual CMS virtual data product. 

With the success of the initial study, the relevant 
functionality of the above RefDB interface scripts and the 
prototype derivation generating scripts have now been 
                                                           
3 In principle one could store all of the CMKIN and CMSIM 
parameters contained in the input card files as VDL formal 
entries of type none in the transformation definition with actual 
values passed to every derivation. But, as the vast majority of 
these necessary parameters are static, they are currently stored as 
a dependent input file for reasons of economy.  This argues for a 
rich, persistent mechanism for the manipulation of structured 
application metadata.  
 

incorporated into the official CMS metadata and workflow 
manager, MCRunJob [13], which queries and updates the 
RefDB, performs the job-splitting and directly writes the 
appropriate Chimera derivations required for each virtual 
data product into the VDC. 

5. A GRID SCHEDULER FOR VIRTUAL 
DATA PRODUCTION 

In order to enable the Chimera system to support long 
running, production workflows on a virtual data grid [4], a 
prototype scheduler, known as WorkRunner was written 
(see Figure 3).   
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Figure 3: Important pieces of the virtual data grid used 
by this study.  The GriPhyN Virtual Data Toolkit was 
used to build the basic grid infrastructure. 

WorkRunner is invoked once all virtual data derivations 
have been pre-recorded into the VDC by the metadata and 
workflow manager (initially the prototype scripts 
described above and now by MCRunJob).  Rather than 
immediately concretizing the DAGs and submitting the 
jobs to the grid, the abstract DAGs are queued into 
WorkRunner.  WorkRunner determines which grid sites 
are free to receive work and submits DAGs from its queue 
to keep them working at maximum capacity.  WorkRunner 
is divided into three modules.  First, a Condor-G interface 
monitors information from the Condor-G submission 
program to determine which sites in the grid are in "need" 
of work.  This "need" is determined using high and low 
watermarks.  WorkRunner determines the number of jobs 
running at each site and if this number is below the low 
watermark, it submits jobs until it rises above the high 
watermark.  The user supplies the high and low 
watermarks so they reflect the expected throughput of the 
particular grid site.  Second, a Chimera interface takes 
queued abstract DAGs, asks Chimera to concretize them, 
and then submits them to the appropriate site through 
Condor-G.  Finally, a job-tracking module records 
information about the status of each job in the 
WorkRunner queue as well as those, which have been sent 
and are executing via Condor-G. 
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6. INITIAL RESULTS 
This project had two testing phases, an integration test 

and a scheduling test.  After the wrapper scripts were 
completed, all the VDL components were created, and the 
derivation generation scripts were written, a test 
production of 150,000 events was performed.  This first 
test used the University of Florida GriPhyN computing 
cluster consisting of 25 dual-processor Pentium (1 GHz) 
machines.  Over the course of 7 days, 678 DAGs each 
computing 250 events were submitted.  Of these DAGs, 
670 were successful and produced 167,500 events using 
approximately 350 CPU/days of computing power and 
producing approximately 200GB of simulated data.  The 8 
unsuccessful DAGs failed when accidentally preempted by 
local user.   

The second test was designed to test the power of the 
new scheduler as well as the Chimera integration on a 
wider variety of computing sites.  New sites were built at 
the University of Florida High Speed Simulation and 
Computing Center, the University of Chicago Computer 
Science Department, the University of Wisconsin, 
Milwakee, Physics Department, and at the Argonne 
National Laboratory DataGrid experiment cluster.  
Additionally, the resources of the University of Florida 
physics cluster were divided and a second cluster was built 
with half of the machines.  All grid sites used the GriPhyN 
Virtual Data Toolkit as the base grid middleware.  In 
addition, all required CMS software4 and supporting 
scripts were pre-installed and configured on all grid sites. 

For the scheduling test, a larger number of DAGs were 
used.  In order to bring the computational time for each job 
down, only one event was produced with each DAG.  
However, 10,000 such DAGs were created.  WorkRunner 
was used to submit these DAGs to all 6 of the compute 
sites.  After continuously running for 4 days, 5954 DAGs 
were submitted to the grid, of which 5559 DAGs returned 
their data successfully.  The 6.3% failure rate was higher 
than anticipated and resulted from unforeseen failures in 
the other grid components.  In one instance, an entire 
compute site lost communication with the submitting site 
for several hours and approximately 200-300 hundred 
DAGs failed to write back their data back during this time.  
The cause for the remainder of the failed jobs, about one 
random job in fifty, appears to be due to known 
deficiencies in early versions of the grid middleware. 

7. SUMMARY 
Tests of the GriPhyN Chimera Virtual Data System 

have been performed within the context of CMS 
Production of Monte Carlo Simulated Data. A CMS 
Workflow Planner, MCRunJob, was used to generate 
virtual data products using the Virtual Data Language. 
                                                           
4 As the ORCA application stages were only certified for 
execution within a Red Hat Linux 6 environment, only grid sites 
running that version of the operating system were used for 
running the ORCA stages of a DAG. 

Subsequently, a workflow manager, known as 
WorkRunner, was used to schedule the instantiation of 
virtual data products across a grid. The tests demonstrate 
the feasibility of using such a Virtual Data System to form 
a production workflow using high level, existence and 
location independent descriptions as well as, automatically 
mapping and scheduling such high level, logical 
descriptions of workflow onto physical grid resources 
within an actual CMS production environment.  
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